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Abstract
Protein Language Models (pLM) have proven ver-
satile tools in protein design, but their internal
workings remain difficult to interpret. Here, we
implement a mechanistic interpretability frame-
work and apply it in two scenarios. First, by train-
ing sparse autoencoders (SAEs) on the model acti-
vations, we identify and annotate features relevant
to enzyme variant activity through a two-stage
process involving candidate selection and causal
intervention. During sequence generation, we
steer the model by clamping or ablating key SAE
features, which increases the predicted enzyme
activity. Second, we compare pLM checkpoints
before and after three rounds of Reinforcement
Learning (RL) by examining sequence regions
with high divergence of per-token log-likelihood,
detecting the residues that most align with higher
predicted affinities.

1. Introduction
End-to-end differentiable models are complex nonlinear
functions f : X → Y that map an input space X to an
output space Y . These mapping functions are essentially
black boxes, making it difficult to explain how and why a
model ends up making a particular decision. Protein lan-
guage models (pLMs), are no exception, but despite their
hermetic nature, pLMs must have nevertheless learned some
complex sequence-to-function relationships, as evidenced
by their versatility and state-of-the-art performance in tasks
ranging from protein folding (Lin et al., 2023a) to protein
design(Yang et al., 2024; Madani et al., 2023; Bhatnagar
et al., 2025), including distant yet catalytically efficient en-
zymes (Munsamy et al., 2022; Madani et al., 2023; Johnson
et al., 2023; Parsan et al., 2025).

Mechanistic interpretability aims to provide a detailed anal-
ysis of the mechanisms underlying the predictions of deep
learning models. Sparse Autoencoders (SAE) in particular
have recently emerged as a relevant tool to extract inter-
pretable features and compose them, for the study of inter-
nal circuits from LLMs (Marks et al., 2024). In the field of

protein research, we are witnessing applications for pLMs
with promising outcomes, especially for the understanding
of encoder-only pLMs (Parsan et al., 2025; Simon & Zou,
2024; Adams et al., 2025; Garcia & Ansuini, 2025).

SAE models consist of an encoder-decoder architecture that
learns to produce intermediate activations of higher dimen-
sionality 1, incentivized to be sparse through the training
process. In particular, the encoder transforms an input x
into an intermediate vector through a function f , ensuring
the activations are sparse (i.e., present few non-zero fea-
tures) by applying a BatchTopK activation that retains the
k × n largest entries of the SAE latent within each batch,
zeroing out all the others (Bussmann et al., 2024) (Eq. 1).
The decoder learns to reconstruct the activations x as output
(Eq. 2), by applying a training loss that is formulated to both
reconstruct the model activation by the mean square error
of the vector x and x (Eq. 3) with the auxiliary loss that
ensures sparsity (Eq. 4):

f(x) = BatchTopK (Wencx+ benc) (1)

x̂ = Wdec f + bdec (2)

L(x) = MSE (x, x̂) + Laux (3)

Laux = MSE (e, ê) (4)

In this work, we investigate the potential of SAEs in the
context of decoder-only pLMs. We explore their application
for interventions during inference (steering). Additionally,
we study the changes induced in the internal representations
of the model comparing the checkpoints of ZymCTRL, a
conditional pLM, before and after alignment through direct
preference optimization (DPO), to understand the position-
dependent patterns learned during RL campaigns.

The contributions of this work are threefold:

• We trained a suite of Sparse Autoencoders on ∼1
billion tokens from the BRENDA enzyme database.
These SAEs can be applied to diverse downstream
tasks, such as explainability or enzyme design.
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• We developed a protein engineering workflow by fine-
tuning these SAEs on α-amylase DMS data, identify-
ing features that correlate with fitness through sparse
logistic regression. We implementing causal interven-
tions (feature clamping and ablation) with the goal of
steering the model toward the desired fitness.

• We analyze how protein language models evolve under
RL alignment by applying model diffing, revealing
both localized amino acid preference shifts and broader
changes in sequence exploration strategies between pre-
and post-alignment checkpoints.

2. Methods
2.1. Activity prediction Oracle and Dataset

Following (Schmirler et al., 2024), we trained an activity
prediction oracle by fine-tuning ESM-1v (Meier et al., 2021),
with LoRA adapters. Both models were trained to predict
the activity of α-amylase variants using publicly available
datasets from the Protein Engineering Tournament GitHub
repository (Armer et al., 2023). Specifically, the models
were trained to predict SAPI values, which represent the
ratio of the specific activity of a variant to that of the ref-
erence enzyme. Prior to training, we filtered out entries
with no recorded activity or with expression below 0.5. The
models were trained for 57 epochs using an 80/20 split for
training and validation. A batch size of 4 and a learning rate
of 3× 10−4 were applied during training. Learning curves
and Spearman correlations are illustrated in Figure A14.

2.2. SAE architecture and Datasets

We trained a suite of sparse autoencoders on approximately 1
billion tokens from the BRENDA enzyme database (Schom-
burg et al., 2000), injecting them into the residual stream
of ZymCTRL before the attention module. Following best
practices, we used the BatchTopK activation function during
training, which retains only the top-k × b activations per
batch, where b is the batch size.

After pretraining, we fine-tuned each SAE on our Deep Mu-
tational Scanning dataset with a reduced learning rate to
prevent overfitting. During training, the batch size was set
to 4096, with a learning rate of 3× 10−4, using the Adam
optimizer with β1 = 0.9, β2 = 0.99, and an expansion
factor of 12. The residual stream dimension is 1280 yield-
ing 1280 × 12 = 15360 latents (decoder rows). Layer 26
was chosen based on preliminary results indicating superior
performance compared to other insertion points 13.

2.3. Feature Selection and Causal Interventions

To identify the most predictive latent features, we pooled
position-wise activations into sequence-level vectors and

trained a Sparse Logistic Regression model using the
Sklearn implementation (Pedregosa et al., 2011). The re-
sulting coefficient vector has as many entries as decoder
columns, with most coefficients being zero. Features with
nonzero coefficients were subsequently used for down-
stream interventions. Interventions were performed at in-
ference time if the target feature was activated during the
forward pass. Specifically, clamping involved setting the ac-
tivations of features identified as positively correlated with
the activity, to their maximum observed values in the train-
ing set. In contrast, ablation was carried out by setting to
zero the features that were negatively correlated with the
activity.

2.4. Fine tuning and DPO-alignment

ZymCTRL was fine-tuned on 10,398 protein sequences,
as detailed in the model card available on Hugging Face
(AI4PD/ZymCTRL). Fine-tuning was performed over 28
epochs with a learning rate of 8 × 10−5. Following fine-
tuning, the model was aligned using the Weighted DPO
framework, as described in (Stocco et al., 2024). The reward
function was defined as the mean of three components: (i)
predicted activity, (ii) pLDDT (score, and (iii) TM-score
(van Kempen et al., 2023) of the esm-fold (Lin et al., 2023b)
predicted protein structure. To mitigate reward hacking and
sequence length bias, the final reward was weighted using a
Gaussian length penalty centered at 425 residues,the typical
length of sequences in the DMS dataset.

2.5. Model Diffing

The pipeline described above maps two global properties of
an enzyme variant: its predicted activity and the position-
wise pooled SAE activations.

To investigate position-dependent sequence–activity rela-
tionships, we compare the next-token probability distri-
butions produced by two checkpoints of our model: the
base model and the DPO-aligned model at iteration 3, as it
showed the highest reward (Figure A2)

At each sequence position, we compute the Kull-
back–Leibler (KL) divergence between the two models’
next-token distributions using the raw, ungapped sequences.
For comparison between the two models, we aggregate
the KL divergences by aligning the per-position KL diver-
gence by re-indexing based on a multiple sequence align-
ment (MSA) (Figure A??),allowing to compare sequences
of different lengths. In particular, MSAs of all generated
variants are performed using MAFFT (Katoh et al., 2002)
with default settings. We then re-index the per-sequence KL
divergence scores onto the MSA coordinate frame, so that
each divergence value corresponds to a consistent alignment
position across variants.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Sparse Autoencoders in Protein Engineering Campaigns

Figure 1. a) Schematic representation of the training process for SAEs. The SAE is inserted between the model’s layers. Embeddings x
are passed through the encoder-decoder and reconstructed as x̂, with sparsity enforced in a higher-dimensional space than the input vector.
This may provides a more interpretable representation, as learned features can potentially be correlated with observed features. b) Specific
application of SAEs for protein engineering, as exemplified in this work. ZymCTRL (pLM) is fed with DMS data, and correlations
between learned features and activity measurements are used to interpret and extract relevant features that are then used to steer the model.
c) Steering is performed through clamping and ablation. The resulting effects reveal an increase in the average predicted activity compared
to the base model d).

Finally, we select the top MSA columns by average KL
divergence. These top-KL positions highlight the residues
where the base and DPO-aligned models differ most strongly
in their predictive distributions.

3. Experiments and Results
3.1. Steering Interventions for Enzyme Generation

Following Chalnev et al. (Chalnev et al., 2024), we assessed
two causal interventions on feature activations during au-
toregressive generation of enzyme variants. In the abla-
tion intervention, whenever a targeted feature naturally ac-
tivated, its value was set to zero; in the clamping inter-
vention, any activation was set to its maximum observed
value in the training distribution (Figure 1c). Both meth-
ods relied on reconstruction-error terms from a Sparse Au-
toencoder to preserve sequence quality. As a baseline, we
implemented Contrastive Activation Addition (CAA) (Pan-
ickssery et al., 2023), which adds a “steering vector” during
generation equal to the difference between mean activa-
tions of high-activity (> 2.5) versus low-activity (< 2.5)
α-amylase classes.

We generated large ensembles under each steering scheme
and from the unmodified base model, then predicted their
enzymatic activities using our trained oracle. Distributions
were compared to the base using the Mann–Whitney U test;
only statistically significant shifts were retained for further
analysis (Table 1).

Intervention Median Predicted Activity p-value vs. Base

Base (no steering) 1.045 —
Ablation 1.051 0.003
Clamping 1.139 < 0.001
CAA 1.058 0.015

Table 1. Median predicted activities and significance of steering
interventions compared to the base model.

Clamping produced the largest shift (median +0.13), fol-
lowed by ablation (+0.07) and CAA (+0.05), confirming
that targeted feature manipulations can guide predicted en-
zyme activity in some cases. More concretely, out of the
45 steering interventions tested (17 ablation, 15 clamping,
and 13 CAA), only 11 interventions deviated from the base
distribution in a statistically significant way. Of those 11,
only 4 interventions (all of them clamping) had a median
activity higher than the reference distribution.

3.2. Diffing Dynamics During RL Alignment and
Interpreting Model Evolution

We applied DPO for three iterations, consisting of less than
0.1% of the compute used in initial pre-training stage (Fer-
ruz & Höcker, 2022)—to align the model towards higher
activity. We generated sequences from both the base and
DPO-aligned models, performed MSA to re-index per-token
similarity metrics, and computed the KL divergence at each
MSA position.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Sparse Autoencoders in Protein Engineering Campaigns

Figure 2. a) Starting from the FT-ZymCTRL, it was aligned with DPO setting the objective of increasing the average predicted SAPI.b)
By comparing the two model checkpoints—FT-ZymCTRL and its aligned counterpart DPO-ZymCTRL, and visualizing their output
sequences using MSAs, we observe a clear pattern: amino acids with low (near-zero) Kullback-Leibler Divergence (KLD) values (in
white) are distinctly separated from regions with higher KLD values. This indicates that the model explores mutations also in regions
that are evolutionarily conserved. c) Furthermore, it is possible to visualize KL divergence in 3D using the structure of the reference
α-amylase (PDB: 1BAG). The active sites are pointed in the 3d structure,and light blue residues correspond to higher KL divergence.

Inspection of the highest-divergence positions (Fig. 2) re-
vealed two distinct patterns: sparse, discrete substitutions
at key residues (vertical columns on key position that span
all the enzyme variants), and broader distributional shifts
across contiguous regions of the protein .

3.3. Testing and Quantifying AA Transition Patterns

By exploiting the first type of pattern (discrete substitutions
at key residues), we can identify positions whose distribu-
tion changed the most through the alignment process with
the fitness oracle. From this analysis, five positions (94,
99, 130, 277, 285) exhibited the highest divergence. For
each site, we constructed two variant sets: one replacing
the wild-type residue with the amino acid favored by the
base model, and the other using the DPO-aligned model’s
top prediction. All other residues remained unchanged. We
then predicted activities for both sets and computed the
mean activity difference for each single-point substitution
(Table 2).

Residue Position AA Transition ∆ Mean Activity

94 I → L 0.010
99 D → E 0.716
130 I → L 0.103
277 D → Q 0.010
285 S → L 0.946

Table 2. Activity shifts for single-point mutations informed by base
vs. DPO model preferences.

The S→L substitution at position 285 drove the largest gain
(mean +0.946), with D→E at position 99 yielding +0.716.
A moderate improvement was observed for I→L at 130
(+0.103), whereas transitions at 94 and 277 were effectively
neutral (each +0.010). These results demonstrate that a
handful of targeted amino acid changes can recapitulate
most of the alignment-induced activity enhancements.

4. Discussion and Limitations
Reverse-enegenering to make neural networks human-
interpretable is the aim of mechanistinc interpretability
(Olah et al., 2018; Meng et al., 2022; Nanda et al., 2023).
A key challenge of mechanistic interpretability is identify-
ing the correct units of analysis, that are ideally canonical
(irreducibile, indivisible, and complete)(Leask et al., 2025).
Due to their properties, SAEs offer intriguing possibilities
for interpretability research.

In this work, we explored the application of SAEs in the
context of a protein engineering campaign. Specifically,
we trained SAEs and extracted features that correlate with
an external oracle trained to predict enzyme activity. By
ablating and clamping targetted activations, we observed it
is possible to deviate the base model distribution, although
the effect of a single intervention at a time remains mod-
est. We also computed KL divergences between base and
aligned models, to investigate how RL alters the model’s
internal representations. Through this process, we were able
to capture fine-grained differences and identify how individ-
ual mutations contributed to measurable improvements in
generated sequences.

In future work, we envision (1) combining steering multiple
interventions (clamping and ablating) for the engineering of
α-amylase variants, and (2) testing base and steered designs
experimentally.
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Figure 3. Average sequence perplexity across sequential DPO rounds.

Figure 4. Average pLDDT, as measured by ESMFold, across sequential DPO rounds.

Figure 5. Average TM-score between the reference enzyme and ESMFold-predicted structures during sequential DPO rounds.
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Figure 6. Average sequence length across sequential DPO rounds.

Figure 7. Global distribution of sequence length versus alignment length.
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Figure 8. Percentage of overlap between the top ranked features, obtained trough gradient attribution on key-residues

Figure 9. Mean, Maximum and Standard deviation attribution to each layer, for the attribution in the 5 key-residues.
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Figure 10. Layer-wise attribution metrics
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Figure 11. Top features for each position and layer, as measured by gradient attribution on the difference in AA transition logprobs

Figure 12. Scatterplot of the cosine similarity and difference in norms of the latents of a SAE before and after finetuning, the points are
colored based on the difference in thresholds
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Figure 13. TSNE visualization of the embeddings of DPO sequences at different layers

Figure 14. Training curve of esm-1v with Lora Adapter, as reported in Chalnev et al. (Chalnev et al., 2024)
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